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The relationship between spectra of moment and momentless [membrane] syst- 
ems of differential equations which describe the characteristic oscillations of 

shells of revolution is examined. 
For the eigenvalues of the lower series the oscillation theorem is proven. Con- 

ditions are found for which the lower series of frequencies of the momentless 
system has a finite limit point. 

A number of papers are devoted to finding the frequencies of characteristic oscillations 

of a thin shell by the small parameter method (see Bibliography). 
In this paper some mathematical problems are examined which are connected with 

the problem of finding the characteristic frequencies for a shell of revolution. In this 
case the characteristic oscillations with m waves along the parallel are described by the 

following system of equations 0, Sl; 

- un - fB’ y’ - mu+4v’ _ 
2B K > $‘+(I-G&&-g)]“+ 

mB’ 3-G + B’ -2v i-($,+--W’+ (&+&)‘w=hu 

i--o m -- ./fU 2 
(1 + 4 ut l--a l3l mB’3--a 

--- 2 u v’f u”yu- (0.~) 

Here 14, U, W are the projections of the displacement of a point on the directions of the 
meridian, the parallel and the normal to the shell, respectively; s is the length of the 
meridian arc, u 4 s < b: J!I (s)%s the distance from the meridian to the axis of rev- 
olution; If, (s) and II, (s) are the principal radii of curvature of the shell 

1 1 
F= - -d-m’ 

‘r/l - 17” 
//2= B ’ 

h=(l-G2)+p2, .p’I=$- 
,- - 

where E is Young’s modulus, CJ is Poisson’s ratio, 
(0.2) 

*/ is the density, p is the frequency 
of oscillations, i& is the thickness of the shell and p is the small parameter. The system 
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(0.1) will be examined for the following boundary conditions: 

u (a) = u (Q = u (a) = u (b) = w (a) = w (b) = w’ (a) = w’ (b) = 0 (0.3) 

This corresponds to rigid fixing of the edges of the shelt along two parallels. 
If we introduce into the analysis the vector function f (s) = (u (s), u (a), w (s)), we 

write the system (0.1) in the abbreviated form 

L&f = kj (0.4) 
For boundary conditions (0.3) the operator L, is self-adjoint and positive definite if the 
scalar product is determined from the following equation: 

b 

(O-5) 

The spectrum of the operator L& for 16 # 0 is discrete and its eigenvalues A,: (rt) 
are positive. In this connection lim A.k (p) = a?for k +- oo .The eigenvectors f ,, (s, p.) 

.(X; = 1, 2, . ..)are orthogonal for any arbitrary vector functiong (s) .The following exp- 
ansion (9 which converges in metric (0.4) is valid: 

g (a) = 5 ck (IL) fk @* 11) (0.6) 
%=I 

Let us set ~1 = Oti (0.4). Then a degenerate (momentless) operator Lo arises and is 
self-adjoint if in (0.3) the boundary conditions imposed on w (s) are removed. In fact, 
it is easy to verify that 

(LA* fs) = (A* TOM 

for any fi and f,,which satisfy the conditions 

tf. (a> = U (b) = u (a) = tr (It) = 0 (0.7) 

Furthermore, the operator L,,is positive definite. For any real f, which satisfies the 
conditions (0,7), we have 

The spectrum of the problem 

&f = Af (0.5) 
now will not be purely discrete. 
ues of the function 

In Sect. 2 it is proven that the interval [o, fi] of val- 

(3 If g(s) iS a Smmh vector function satisfying conditions (0.3). then the series (0.6) 

converges uniformly in.s E (a, &]. 
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belongs to the continuous spectrum of the problem (0.8), (0.7) [4-61, Outside the int- 
erval tr, 1; the spectrum is discrete. The ends of the interval, CC and fi can be points 
of concentration for the eigenvalues of the operator L,, for small a and large p. Assum- 
ing for definiteness thath = owill not be a point of the spectrum (0) of the operator 

ho, it is possible to show (the proof is presented in the Appendix) the strong convergen- 
ce of operator L,-’ to Lo-l forp + O.I’his means that for any vector function g (s) 

limjj(LP-r - L,-‘)g/I = 0, 
P4 

II glj = (g9 6)“’ (0.10) 

Here the scalar product (g, g)is determined according to Eq.( 0.5). On the basis of a 
theorem in the general theory of perturbations [7] the indicated situation leads to a 

strong convergence of the spectral function of the operator L, to the spectral function 

of the momentless (degenerate) operator L,,. For details the reader is referred to mono- 

graph 171. However, the conclusion drawn here will be clarified through the following 
important corollary which is based on this conclusion. Let h, be an isolated eigenva- 
lue of the operator L, (for simplicity single) and f. (s) the corresponding eigenfunction. 

Let E be so small that in the interval& ]A, - e, A, + a] there are no eigenvalues of 
L,, other than-&,. 

Also let 
&* is) = 2 c~ (p) fk csv r-l> @k (CL) 62 A‘) 

Ak(PL) 

be the interval of expansion of g (s)in the series (0.6) corresponding to those eigenval- 

ues A,, (p), which belong to A, (for p + 0 their number can increase (I)). Furthermore 

we have always 

]im II gp* 6) - (g8 f0) f0 (s) II = 0 

In particular, for g (s) = /a (. ) h s t e indicated interval of the Fourier series tends in the 

mean square to f. (s). 

It is clear that the above mentioned fact does not contain complete information on 
transformation of eigenvalues hh (1~) into the spectrum of operator La. This problem 

requires special examination. We note, however, that for eigenvalues of problem (0.7) 

(0.8 which are smaller thancr = inf ‘p, (s)(see (0.9)) the conditions of regular degen- 
eracy are satisfied in the sense given by the authors of [8]. For these hl, (p,) it is there- 

fore possible to write the following asymptotic equations in analo’gy to the way it was 
handled in [9] in the axisymmetric case 

A,, (CL) = A,” + @I,’ + o (P) 

This paper is devoted to the investigation of the spectrum of the momentless system 
(0.7),(0.8). A large part of theorems given below is a generalization of results obtain- 

ed earlier for the case of axisymmetric oscillations and presented in [6, 91. 
In Sect. 3 the oscillation theorem is proven for the system (0.7). (0. 8). In Sect. 4 the 

sufficient conditions are found for which the first series of frequencies (the least) is in- 
finite. 

(‘) Otherwise LP and L,, should be replaced by L, + x and L,, f x respectively, with 

x :, 0. 
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1. The Cauchy problem for the momcntleu aptem. In (0.1) we setp = Ohtroduc- 
ing the Vector u = (u, u) we rewrite the first two equations of system (0.1) in the form 

A,$ + A,y’ + A,y - 3LAd =,A& + As (1.1) 

Here d and e are vectors 

d = (w’, 0), e = (w,w) (1.2) 

Through Ah (s) (k = 0, 1, . . . . 5) we denote matrices of the second order. The elem- 
ents of these matrices can be easily reconstructed from system (0.1). In particular 

-1 0 
A 

R,-’ + Is,-% 0 
0= - 

0 
A, = 

0 0 (1.3) 

The third equation of system (0.1) for p == 0 has the form 

-bou’ - b,u - b,v + (cp2 (s) - h) u’ = 0 (1.4) 

Here we have introduced the well-understood designations for coefficients. In particular 

b, = R,-’ + GR,“, ‘pz (s) = R,+ + ‘251<,-‘12,--l + R,-2 (1.5) 

It is easy to verify that v2 (s) - 91 (s) = (x1-l -!- OK,-‘)” > 0, The function vI (s) 
is determined by Eq.( 0.9). The interval of values (I’1 (S)is denoted by [a, P],The int- 

erval of values q2 (s) for a < s \( bwill be [v, 61. Assuming that the coefficients of the 
system (0.1) are piecewise-continuous, we prove the following statement. 

Lemma 1.1. Let r,, T2, r3, r,be arbitrary real numbers and s0 E [a, b].Then 
for hF [a, PIand A+ ‘p2 ( s, t ) h ere exists a unique solution f (s, A) = (U (s, A), 
U (S, A), w (s, A)) of the system (0. 8) which satisfies Cauchy’s condition(*) 

u (so, A) = r,, u (so, A) = r2, U’ (so, h) = f,, u’ (so, h) = r4 (1.6) 

The vector function f (s, 3L) is analytic for all complex k ?Z [a, fi] and 3L # cpz (so). 
Proof. We express u and u from system (1.1) through u, and substitute the result 

into (1.4). We obtain the Volterra equation with respect to w (s, h), which allows the 
proof of the lemma. System (1.1) written in the abbreviated form is 

l,Y=P (1.7) 

Let 
y (8, A) = (y(, ‘;p) (f-8) 

be a fundamental matrix of the dimension 4x4 composed of solutions of the system 

l,y = 0 (1.9) 

The matrix also satisfies the condition]’ (so, h) = E, (.Z,is a unit matrix). Let 

(1 . IO)* 

be the inverse matrix of\’ (s, h).Both matrices (1.8) and (1.10) will be entire functions 
of h. It is easy to verify that the solution y (s, 1.) of the system (1.7) can be represented 

in the following form: 

(*) We recall that system (0. 8) is obtained from system (0.1) for 11 = 0. 
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I 

y (s I h) = yo (s I A) + s c (6, q A,‘p (1) a (1.11) 

The solution satisfies conditions (1.6). In (1.11) Y. 0, A) is the solution of the homoge- 
neous system (1.9). This solution also satisfies conditions (1.6). Through C (& f) we 

denote Cauchy’s kernel 
C (8, 1) = Y; (s)Z, (f) +,Y, (s)Z, (1) (1.12) 

In the right side of (1.11) we take the integral containing w’by parts. We have (1.2). 

(1.31, (1.5). 

; ~(~,l)A;lA‘(~)~(odL=S c(II1)j)gW))dl=-Y~(r)b.(sO)(~~))-~K(~~,f)jih(~))~~ 

‘8 a* so 
(1.13) 

fi (6, 1) = [(Y, (8) 2, 0) + Ys (s) 2, (0) h&)11’ (1.14) 

In this connection the obvious relationships C (8, 8) = 0, C (8, so) = Ys (J) were used. 

Thus we have 
J 

Y(S, hj=yo(6, A)- yz (6)bo(60) (1ut)) -5 K b, t) (w;l)j.dt + *. 
0# 

Differentiating this identity. we find 

y’(s,h) = yo’(s, I.)- Yz’ (s) b. (so) (” 5;‘)) -A’ (s, ~)(~;“‘)f 1 T (s, t) t; ;;;) dt i1*16) 
60 

Here 2’ (s, t) denotes a kernel which is continuous with respect to .I and t,and whole 
with respect to 1\ . We now findA (s, s).By virtue of the identity 

Y, (s) ZP (s) + Y, (s) 2, (s) = 0 

we have for K(s, s) from (1.14) 

li(s, s) = IY, (s) 2,’ (s) + Y, (s) 2,’ (s)l ho (s) 

Differentiating (1.17) and taking advantage of the fact thatY,’ (s) 2, (s) - 
= E, and using (1.8) and (l.lO), we find easily 

K (s, S) I - b, (s) Es 

From Eqs. (1.15), (1.16) it follows now that 

8 

u(s, h)*UO(St h)-Ui(S, 3L)bO(SO)tU(.%)$ c 
Kr(s, f)w(f)dl: 

:, 
I 

~(f~~)=vo(~,h)-v~(S.;h)bo(so)w(s~)+~ K~(S,f)W(1)dl 
#b 

t 

(l.l?), 

(1.1s) 

Y,’ (sj 2, (s)= 

(1.19) 

(1.20) 
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u’ (s , A) = uo’ (s, A) - w’ (;, h) 60 (PO) w (so) + 60 (8) w (8) + 
s 

k-a (8, f) w (1) df 

Here (ui, %) are solutions of the one-dimensional system (1:;) such that 

Ul (so) = v, (so) = v,’ (so) = 6, 111’ (so) = 1 (1.21): 

while &, h;‘and Kaare kernels which are continuous with respect to s and t and com- 

plete With Aspect to At; Substitutingu, u u’from (1.20) into (1.4). we obtain the follo- 
wing equation with respect to w (I, A): 

where ;r 

r (s, A) = bo (9) ti’ 0) + bl (8)’ no 0). + 4 (8) uo (8) - 

- @o (s) ui’ ts) + b, (0) us (0) + b, (s) vs (c)l bt, (4 w (~0) (1.23) 

and 

w (so) = 
bo (SO) n + h (SO) rl + bo (SO) rn 

cpl (so) - h 
(1.24) 

Equation (1.24) is obtained by substituting s = so in (1.22). Under the assumptions made 
with respect to I,Eq.(l.22) always has a unique solution which is analytic in h, There- 
fore, substituting the quantity w (s, h)’ found in this manner, into (1.20). we determine 
the solution for the Cauchy problem.. The latter is apparently unique. The proof of 
the lemma is complete. 

Note 1. 1. If r,, rs, rs are such that 

bo (so) r3 + b, (4 r, + b3 (so) ra = 0 (1.25) 

the solution of the Cauchy problem is regular also for h = (p3 (SO). 

Note 1.2. If the valuest,, r2, rsare such that (1.25) is satisfied. the Cauchy 
problem for J, A& (SO) and conditions (1.6) has a unique solution, if additionally an 

arbitrary value is given for w (so). 

2. N&mm of the spectrum in the momentlwc CM& L e m m a 2.1. The spectrum 
of the boundary value problem (0.8), (0.7) is real and nonnegative. The entire interv- 
al [a, fi] consists of points of the spectrum. Outside the interval [a, p] the spectrum 
is discrete (it consists of isolated eigenvalues of finite multiplicity). The limit points 
of the discrete spectrum is X = + co and, perhaps, the end points of the interval 

la, 81. 
Proof. Let us examine the inhomogeneous equation 

Lo f -kf=h (2.1) 

Hereh = (hl (s), h, (s), h, (s))is an arbitrary vector function, which is integrable in the 
square; f = (u, u, ID) is the unknown vector function which satisfies the conditions (0.7). 

The system (2.1) can be written in the following form: 

1,~ = P + h+ (2.2) 

--b,(s) u’ - bl (s) u - bz (4 v + (cpa (4 - h) w = ha 
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where the operator IA and vector pare the same as in (1.7) and h+ = (h,, h&Let 

G (6, t, ic) be the Green function of operator I, for boundary conditions (0.7). then 
b 

We note that 

G (s, 1, h) = 
i 

Yl (s) 22 (t) for r<s 

- Yz (.P) 24 (t) for t>ss (2.4) 

We denote by Yi (s) and Ys (s) 2 x2 matrices which satisfy the equation!). (v) = 0 and the 
following conditions: 

Y, (IS, A) = 0, Y1’ (b, h) = Ez, Y, (a, h) = 0, Yz’ (a, h) = El (2.51 

By 2, .and Z, we denote blocks of matrix Z (t, h),which is inverse to 

The matrix Z (t, ii) is meromorphic, its poles are points of the spectrum of the operator 
1,~ They are positive and tend to + 00. 

Integrating in (8.3) the term containing ut’by parts and substituting the expression for 

P and u obtained in this manner into the second equation (2. d), we obtain in analogy 
to (1.221 

(~)2(~)--h)wH- iQ 

h h 

1 ( s, t, h) w (1) df = 
c 

Qa (s, t, h) hl (t) dt -j- 
h 

c 
Q3 (s, 1, A) h2 (1) dt +- h( 6). 

a h 

Here 
(2.6) 

Qi (s, t, A) (i = 1, 2, 3) (2.7) 

are functions which are continuous with respect to s and t and meromorphic with res- 

pect to li, with poles at the points of the spectrum of the operator I,. 
In this manner Eq. (2.6) is boundedly solvable (*) outside of these poles for any right 

side ii if and only if Eq, (2.1) is boundedly solvable and consequently the spectra of 
Eqs. (2. I) and (2.6) coincide outside the polesG (s, t, h),Utilizing theorems of functional 

analysis [lo], it is easy to show that the spectrum of Eq. (2.6) consists of the interval 

[CG PI- and a desorete set. 
The reality of the spectrum follows from the self-adjoint property of the operator L”, 

The nonnegativity follows from the conditionl, >, ir.The fact that k = -b 0. is always 

the limit point of the spectrum of the operator L,, and can easily be established by the 

examination of the asymptotics of solutions of system (0.Q when i, - +-XI. Lemma 2.1 

is proven. 

Let us examine more closely the discrete spectrum of operatorLO.Let 

f(l) @, V 7 p”’ (s, A) (23) 

(*) The inhomogeneous equation(2.1) is boundedly solvable for a given i., if for any 

s;i~oU! right side IL (s)it has a smooth solution f (s),satisfying the boundary condition 

(0, 7j 5 ilt: also (f, 1) < Co (/b, Ib),where the constant C, is independent of IL., An analogous 

~~akrr~;:i~t applies to Eq,(;?.6). The spectrum coincides with the set of those values of 

J:, for which the bounded solvability is violated, 
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be two solutions of Eq.(O. 8) which satisfy Cauchy’s initial conditions 

%(a* A) = 0, Ul (a, A) = 0, Ul’ (a, A) = 1, 0,’ (a, h) = 0 
212 (a, h) = 0, v, (a, h) = 0, z+,’ (a, A) = 0, 0, (a, A)’ = 1 (2.9) 

for all 

hE.[o, PI, A# ‘ps (4 (2.10) 

Taking into consideration Lemma 1.1, it is easy to show that the discrete spectrum of 

the operator& on the set (2.10) coincides with the zeros of the function 

UI (6, h) w2 (6, A)- 

* lb, h) = Dct VI (6 i , h) vs (6, h) 1 (2.11) 

which is analytic on the set (2.10) and has a pole perhaps only at the point h = (rZ (n) 
We note in conclusion that all eigenvalues which satisfy condition (2.10) can be no 

more than twofold eigenvalues because by virtue of Lemma 1.1 each eigenfunction 

f (s, hk) is a linear combination of solutions (2.8) withh = hk.The point 3\. = tpZ (a) 

can be no more than a threefold eigenvalue (Note 1.2 to Lemma 1.1). 

3. Cbcillation theorem. Let us examine the zeros of the function 

(3.1) 

where Iii (s, 
Lemma 

gion 

are no more 

A) and L’i (s, h) are components of solutions (2.8). 
3.1. For fixed a < s0 < b the zeros of the function A (ss, h)in the re- 

h G [CI, PI, h # (P-2 (a) (3.2) 

than double valued. In other words ifA (s,,, h,,) = 0 and (a/ah) x 
x A (so, h,) = 0, then(P/d3L2) A (s,,, 3L0) =j.= O.In this connection the multiplicity of 
&as a root of equation A (s,,, 

&e differential equation 
k)coincides with the multiplicity of the eigenvalue of 

Lof = If (a B s <so) (3.3) 

with the boundary conditions 

U (a) = U (So) = v (a) = u (so) = 0 (3.4) 

We present only the idea of the proof. The fact that zeros of the functionA (so, k)are 
eigenvalues of the problem (3.3), (3.4) is obvious. Through infinitely small perturbat- 
ion of the lowest terms (even those not containing derivatives) of the equationl,j = hj 
it is possible to make all zeros ofA (so, h)simple in the vicinity of the point )c,.,Accord- 

ing to Rouche’s theorem the number of these zeros is equal to the multiplicity of the 
root h, of the equation A (s,,, 1) = O.In this case it is easy to select the perturbation so 
that all eigenvalues of the boundary value problem also become simple. According to 
well-known perturbation theory the number of eigenvalues arising in this manner is 

equal to the multiplicity of &as eigenvalue. Lemma 3.1 follows from this. The foll- 
owing statement is also valid. 

Lemma 3.2. Let &, be a single root of the equation 

A (~0, 3L) = 0 (3.5) 

in the region (3.2). Then in the vicinity of the point s = so-the equation A (s, x) = 
= 0 determines one differentiable functionA =, 3L (s)(h (so) = h,) . In this connection 
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d?, I 
i 

ds 8=so = - 
--5 uot2 (so,} 2 (3.6) 

Here f. (4 = (u. (4, uo@), w. (8)) . 1s t h e eigenvector of the problem (3.3), (3.4) 
normalized by the condition 

b 

s 
B (s) (uo2 + vo2 + wo2) ds = 1 (3.7) 

a 
For h, := (1‘:: (so) the first term in braces (3.6) should be replaced by zero. 

Note 3.1. If &is a double root of Eq.(3.5), then equation L! (s, 1.) -= 0 determ- 

ines two differentiable functions h, (s) and jb, (s) such that I,, (so) = h, (s,,) = h,.Equ- 
ation (3.6) is valid for derivatives &,/& and d&/&In the right side of this equation 

two eigenvectors of problem (3.3). (3.4) appear. These eigenvectors are orthogonal to 

each other and correspond to 3\ = ?.,,. 
Proof. Together with problem (3.3). (3.4) let us examine the “perturbed” problem 

L, (z) f (z) zz hf (2) (a < z <so + e) (3.8) 

Here the conditions at the ends of the interval[a, so f e]are assumed to be the same as 
in (3.4). E is the small parameter. We take advantage of the fact that roots of the 

equation A (so + e, h)= 0 represent eigenvalues of problem (3.8). Derivatives of eigen- 
values of this problem with respect to parameter e*can be found by means of equations 

of the perturbation theory of linear operators. We make the following substitution into 

(3.8) 4 - n 
Z==.Vl-t-T (R < s < RI) (3.9) 

As a result the operator Lo (z)in (3.8) can be represented in the form 

Lo (z) = L, (s) + FL(l) (s) + 0 (e2) (a < s < so) (3.10) 

According to known theorems of perturbation theory fl] eigenvalues of the boundary 
value problem (3.8) are differentiable functions of e, and the following equation is 

valid (*) 
dh 

de c-n = (LV”, fn) (3.11) 

where f. (s) is the normalized eigenvector of the operatorl, (s) (a Q s < sO).Equation 
(3.11) is valid also in the case when ho is a double valued point of the spectrum. It is 

valid for both functions& (E) (k = 1, 2). For calculation of the right side of (3.11) it 
is useful to make the substitution (3.9) in the following identity: 

Lo (2) lo (2) = AJ fo (2) (a Q z 0 so) (3.12) 

In the relationship obtained in this manner, we separate terms of the first order in F, and 

find that 

(*) By 0 (e2)in Eq.(3.10) we understand a differential operator which contains the factor 
.+. It is possible to show that operatorsl,’ (s) L(l) (s)and L;l (s) O(G) are bounded. This 

makes it possible to apply the theorem on perturbed eigenvalues from the cited book P]. 
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L(l) (s) fo (s) i- Lo (4 (fo’ (s) s) = A&,/“’ (s) G (3.13) 

From here according to (3.11) 
di. 

cis EC0 
= - (Lo (4 g, fo) 4 ?.a (g, lo) g (s) = fo’ (4 -$+- J3.14) 

We note that 

Since g (s)does not satisfy boundary conditions (3.4) only on the right end of the int- 
erval la, SOI then in the right side of (3.14) on integration by parts of the first term, only 

the terms outside the integral are preserved for s = SO. Turning to the explicit expressi- 
ons in the left side of (0.1) it is easy to find that those contributions are different from 
zero which are obtained through integration by parts of the following expressions: 

w (4 ds 

@’ 1-c d 
- 

\ 2 BTG- + 
. 

-$- (Bgz)) vo (s) Js 
a 

? 

\ 

da 
- B (s) (II;‘(s) + d?;‘) 7 wo (s) ds 

. 

Adding these exoressions. %e obtain 
dh 

1 

i-6 

de cc0 = - I3 (so) (un” (so) + 2 vo” (so) - uo’ (so) 4 (so) roe (so)) 

Here we substitutelu, (s) tram EG(l.4). For the condition& f Q (sO)we obtain Eq.(3.6). 
However, if ho E ‘ps (s&then uo’,(sO) = 0 and only the second term is preserved in brac- 
es (3.6). Lemma 3.2 is proven. 

Lemma 3.3. Let k g [a, G].Then all roots of Ee(3.16) in the half-interval 
(a, b] of variation of a with decreasing h are displaced to the right. 

Proo’f. We note that if h E [a,_bhhen in Ec~(3.6) both terms are nonnegative. By 
virtue of Lemma 1.1 at least one of the terms is different from zero. Therefore for the 
condition h z [a,61 

dklds < 0 (3.lb) 

Consequently, in some sufficiently small two-dimensional neighborhood of the point 
(so, X0) all points(s, h),which satisfy the equation 

A (s, h) = 0 (3.16) 

form maps of no more than two smooth monotonically decreasing functions of h (s). 
The inverse quantities s (h) of these functions are continuous and decreasing. This leads 

to the proof of Lemma 3.3. 

We note in passing that for fixed Ir < 0 Eq.(3.16) does not have any roots at all in the 
half-interval s E (a, bJ.‘This follows from the positive definiteness of the operator (3.3) 
for any a < so f b. In conclusion we shall amplify our considerations about zeros of Eq. 
(3.16) through the following remark. 

Lemma 3.4. All zeros of Eq.(3.16) for fixed 3, G [c, &j.are no more than 
double valued. If 



658 A.G. Aslanian and V.B. Lidskii 

A (sot ho) = 0, aA/& (so, ho) = 0 (3.17) 

then 
Wasa A (so, X0) # 0 (3.18) 

In this connection a double valued point of the spectrum of problem (3.3)‘ (3.4) corres- 
ponds to a double root so. 

Proof. If (3.17) is satisfied, then it follows from the obvious equality Aa’ + A,‘. 

l zLa* = 0 that A,’ = 0 if we take into account that 5’ + 0. Since A,, $I O(Lemma 3.1). 

the negative values of both derivatives in (3.6) coincide with roots of the quadratic 
<, 

equation Aa,” -I- 2 AikE + AhhE =. .U. Equation (3.18) follows from this. 
Let US renumber the eigenvalues of problem (0.8),(0.7), which are less than a [6], 

in increasing order taking into account the multiplici~ 

h 0) < A(‘) < 0 1 1 \ l ,. & h(k) < ..* (3x4 

Let n, (h) be the number of zeros of function 4 (s, h) for fix&d & in the half-interval 
(a, b].The following oscillation theorem is the result of analyses performed above. 

Theorem 3.1. a) The number of eigenvalues of problem (0.8), (0.7) which do 

not exceed 3L, is equal ton., (h) (h < a). 
b) The first series is infinite if an only if 

;:t %W = O" 

c) hfl" is a multiple eigenvalue if and only if s = bis a double zero of function h (s, 

$‘)d) If At’ is a simple eigenvalue, then in the interval (a, 21) function! A (s, 3Li”) has 
exactly k zeros taking into account the multiplicities. 

4. Condition8 f&r fnfidty of &a firtt 86x&, In this section we will point out the con- 
ditions placed on B (s), for which the problem (0.8). (0.7) leads to an infinite series of 
eigenvalues less than a, where 

a = iafqp,(s) (s E Ia, &I) (44 

The corresponding theorems are generalizations of conditions given in the axisymmetric 
case 16, 91. 

Expressing m (s)in the third equation of system (0.1) through u, uand U. and substit- 
uting it into the first two. we arrive at a system of two equations 

CiU” + taut -I- CsV -t- C& + C&V = 0 (4.2) 

Dlvn + Dad + Dg' + D,u + D&v = 0 

Here Ci and Dtare functions of s and h, The explicit expressions for these functions 
have not been presented so far. It follows from the oscillation theorem that the first 

series can be infinite only if for h = 01 the system (4.2) has a solution with an infinite 
number of zeros. This situation does not contradict the uniqueness theorem because 

for h = a the system (4.2) has a singularity. It is actually easy to check that 

Therefore the points se, for which 

'pl (so) = a 
(4.3) 

are singular. 
Let us examine the asymptotics of solutions of system (4.2) in the vicinity of the 
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singular point so. We note that all functions Ci andDl (i = 1, 2, . . . . 5)are smooth 
functions of s and that Di (s, a) # 0.1f so is the end of the interval [a, bl and 

qr’ (s,,) # &then it is easy to show that solutions of system (4.2) have only a finite 
number of zeros. Infinite oscillation is possible only for the condition 

‘pi’ (so) = 0 (4.4) 

which by virtue of (4.1) always occurs when ,s 0 is an inside point of the interval [a, b J. 
We recall thatcp, (s) = (1 - CT)~B-T (1 - P).~.et 

B (.s) = fiu + f$ (s - so) -j- V2 & (s - s$ f Vtfi3 (s.- s,J3 + . . . (4.5) 

Here we have introduced obvious notation for derivatives of function B (s) at the point 
so. We note that 1 PI 1 = 1 13’ (so) 1 < IForq),, (s)we have the expansion 

cpl (s) = i+ {% + 01 (s - so) + i/s $2 (s - soj2 + * * .) (i.6) 

where 
Qo=1--p12, OJ== - 2i31 (P, + *q) 

02 = 2 
I - P2" 

_ # (1 _ 5~~2) + 3 ti if17 PI’ - fj,fj,] 

(44 

In this manner the condition (4.4) is satisfied in two cases 

a) 8r = 0 (4.8) 

b) P2 + (1 - P1")IPo = 0 (4.9) 
which we will examine separately. At present let us assume that 

0s + 0 (4.10) 
Coefficients of system (4.2) are expanded in powers ot s - so = fin the vicinity of the 
point so. As a result we obtain 

(art2 + 0 (P)) U” + @art + 0 (t)) u’ + (a3 + 0 (1)) u + 

+ (b, + 0 (1)) I+ + (b2 + 0 (1)) u = 0 (4.11) 
t--b, + 0 (1)) u’ + (Ca + 0 (1)) u + @” + (d, + 0 (1)) 0’ + 

+ :(d3 + ‘0 (1)) u = 0, t = s - so 

Expressions for coefficients of Taylor expansions are presented below. 

=’ y,, u = y,, or’ = l/t (yj), andur’ = 
Substituting u = 

YJ the system (4.11) is reduced to a syst- 
em of four first order equations. The system is written directly in the matrix-vector 

y’ = (+o+Ql+m)Y (4.12) 

Herey = (Yll Y2r !.I,, Y4) is the unknown column vector Q20, &rare constant matrices. 
In this case 

0 0 i 0 

0 0 0 0 
Q 0= 

- as/a1 -h/u1 --1 -b&1 
(4.13) 

0 0 zbtj(i -G) 0 

It is easy to check that 

Del (Q, - CL&) = Pa {P + P + $cq + -$} (4.14) 
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LetCL,, k, CL3 = 114 = 0 be the roots of the characteristic polynomial (4.14). The 

It is easy to show that the system (4.12) ‘has four linear independent solurions of the form 

!/(I) (t) = lp+t) (1 + 0 (l)), $2) (L) = tlLp (1 + 0 (1)), $3) (t) = f(3) + 0 (1) 

$4) (t) = f(4) + 0 (1) (4.16) 

Infinite oscillation in the vicinity of the point s = s0 is possible only for the condition 

where the roots p1 and psof the polynomial (4.14) are nonreal, The corresponding con- 
dition has the form 

D = uI2 - 4a, (b121d, + a3) < 0 (4.17) 

Now we shall prove the following proposition. 
Theorem 4.1. Let at some points = s,, ‘pr (s,,) = a > Oand the condition (a) 

B’(s,) = Obe satisfied (4.8). We set 

B (s) = B. - + (s - so)2 + o ((s - s,,)~) 
and let 

O<kB,< 1 (4.18) 

Then for the condition 

9 (kBJ2 + (12~ - 1) kB, f 4~5~ + 8m2 (1 - kB,) > 0 (4. IO) 

CL is the limit point of the discrete spectrum of the problem (0.8), (0.7) (the first series 
is infinite). 

Note 4.1. Here 12 = 1 B” (s,,) 1 is th e curvature of the meridian at the point s = 

= s,.The inequality (4.18) indicates that for s = ssthe abscissa of the meridian reaches 

a maximum and the center of curvature lies on the other side of the axis of rotation 

Wg.1). 

I Note 4.2. For o > 1/2.1 the condition (4.19) is supe- 

Relationship (4.10) is valid for conditions (4.8) 
and (4.18)(see(4.7)). For the coefficients of Taylor ex- 
pansions in (4.11) we have 

(i,and d, are some constants which are 
unessential to the problem under consideration. It is easy to verify that the condition 
of oscillation (4.17) takes the form 
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- (1 ;o;2~~~k;‘~$n) ’ (9 (kB,)s + (125 - I) kBo + 49 + 8m2 (I- kBd) < 0 

As a consequence of (4.18) this is equivalent to the requirement (4.19). Therefore Eq. 
(4.14) has two nonreal roots 

p1=i2 = -l/2 + 4% P#O (4.21) 

kt US assume for simplicity of presentation that so $; aand that in the half-interval 
[a, ~0) the system (4.2) does not have any singular points (*)‘C, (s, u) -+ 0 for a < 

< s < so. Let the matrix 

Y1 (8) Yz (s) 

= 6) = (Ys (s) Y, (s) 1 ’ 
s E [a, so) (4.22) 

be composed of solutions (4.16). It is evident that Y (a) is nondegenerate. We write. 

Y-1 (a) = (; ;) 

Through A (s)we denote the upper right minor of the matrix Y (s)Y-’ (a).It is easy to 
verify that for S --t SO - 0 

A (s) = Xe [(s - s# (blldt2 - Z712d2J hl + 0 (1) (4.23) 

Here bit and d,, are elements of matrices B andD, and b, # Oas in (4.20). If now 

kG, - bl241 # 0 
(4.24) 

then in the left half-neighborhood of point so the function A (s)has infinite number of 
zeros. 

Let N be an arbitrary integer. Let us select 6 > 0 so small that the function A (s) 
will have N zeros in the half-interval(a, so - G).l’hen we select a h < aso close to 

CZ, that the functionA,(s, hywhich was introduced by Eq.(3.1). for the system (4.2) 
will have N zeros in the half-interval[a, s0 - 6)This can be done on the basis of the 
theorem on continuous dependence of the solution of the Cauchy problem on the param- 
eter h.Since lVis arbitrary, the first series is infinite according to Theorem 3.1 and the 

proof for Theorem 4.1 is complete. 
It remains to be noted that condition (4.24) can be discarded. It is actually possible 

to show that an arbitrarily small perturbation of system (0.1) always exists such that in 

the perturbed system the condition (4.24) will be satisfied. This condition is realized 
with the aid of the positive definite matrix which is equal to zero outside the right E - 

half-neighborhood of the point a. Consequently, the perturbed system will have an infi- 
nite first series. Since the indicated perturbation increases the eigenvalues, it is estab- 
lished by the same token that the unperturbed initial problem also has an infinite first 
series. 

The following proposition is also valid. 
Theorem 4. 2. Let at some pointS=S, (pl (So) = a > @and let condition (b) 

be satisfied (4.9) 

PZP” + 1 - PI” = 0 (4.25) 

where P, are coefficients of the Taylor expansion for the function B (S) in the vicinity 

s = sOas in (4.5.). 

(*) The reader can easily extend tne proof presented below to the general case. 
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Let also (*) 

(k26) 

Then a is the limit point of the discrete spectrum of problem (0.7) (0.8). 
Proof. It was already mentioned that for condition (4.25) q,’ (so) X 6 (see (4.7)). 

In this connection it can be verified that Taylor’s coefficients in system (4.11) have the 
following form: 

1 --G 02 
a1=2(1+a) 

. * 
a3 = (I - 4 (2 + G) +- r-l- 2(1 + b) On I - (’ -zma (4.27) 

m (1 - 5) 1 -G 

bl=- 2po , 
,=- 2 

Substitution of these expressions into (4.17) leads to the inequality 
l--a 02 

-- 
i+a Wl i 

-4(l i 

which is always satisfied by virtue of inequality oz > 0 . The proof is carried out in the 

same manner as in Theorem 4.1. 

Let us explain that for conditions (4.25) andos > 0 the plot of the meridian in the 
vicinity of the point s ‘= s0 has the form represented in Fig. 2 (we assume that (I < B’ 

/H--N 
/ 

/ -1 
(s,) < l).The dashed line indicates the adjoining 

circle. For condition (4.25) 13, = Rs, i.e. the cor- 
/ 

\ 

1’ 

\ 
\ 

responding point is umbilical, In conclusion we note 

I \ the following fact. 

Fig. 2. 

Theorem 4. 3. Let for some a= a,, function 

rpi(s,,)= u > 0,letp > land 

'pl (4 = 01 (%) + 

+%ZE!&+, -so)=' + o((s - s#P) (4.28) 
where 

CPY (so) > 0 (4.29) 

Then u is the limit point of eigenvalues. The proof 
of this fact must be omitted due to lack of space. 

Appendi& Proof of Eq.(O. 10). Let us denote through I+ (a, b) the Hilbert space of 
vector function g (s) = (gi, g,, gs) with scalar product (0.5) and let L, (a, b)be a space 

of scalar functions with an integrable square. For fixed g E l,, (a, 0) we introduce 
the function 

cp (PL) = (G& g) (A. I) 
Let p. > O,then we have 

(*) Since rr = Inf cpi(s),- condition (4.26) implies the inequality o1 > 0. 
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= - g (L;t,*,L,L&, g) 
by L,,we denote here the operator which in the left side of system (0.1) stands with 
1~~. The operator L4 contains fourth order differentiation of the coordinate tu (s). It is 

self-adjoint and nonnegative for conditions (0.3). We note also that the operator 

L4L;r is bounded. . Therefore, going to the limit in (A. 2) for Ap 3 0, we obtain 

dqldp = - 4140s (L;:L&:g? g) ,( 0 (A.3) 

Consequently cp (IL) decreases monotonically and according to p] the vector function 
L-,‘g converges in the sense of the norm& (a, b) for p + d. Now we shall prove (0.10) 

It is sufficient to show that 

lim ((L;’ - Li’) g, h) = 0 
P+ 

for an everywhere dense set of vectors h in& (a, b)_Noting that 

(L;’ - L;‘) g = - pL;‘L4LL1g 

(A.4) 

(A. 5) 

we take h in (44) in such a manner that the vector function L;%will be sufficiently 
smooth and will satisfy the boundary conditions (0,3). Then 

(G -L;‘) g, h) = - p4 (Li’g, L,L;‘h) 

and consequently (A.4) is valid. 
It remains to establish that the set of such vector functions h is everywhere dense in 

L, (a,. b).For this we note that for h = 0 the integral equation (2.6) for h = 0 has 
only the trivial solution w (s) 3 0. Otherwise A’= 0. would be an eigenvalue of the 
problem (0.7).(0.8), which is not valid according to the initial assumption. Therefore 

the integral operator which is in the left side of (2.6) transforms the everywhere dense 
in L, (a, b)set of scalar functions into an everywhere dense set. The set of finite (in- 

finitely differentiable) scalar functions ru (s)is everywhere dense in& (a, b).Sets of 
corresponding functions in the right sides of(2.6) have this property. From this it is now 
obvious that given arbitrary continuous /+ (s)and h, (s),it is always possible to find a 

function h, (s) from the everywhere dense set inL, (a, b),so that the vector function 
Li’h will be sufficiently smooth and will satisfy conditions (0.3). 

The authors are grateful to A. L. Gol’denveizer and P. E. Tovstik for their attention 
and several discussions. 

BIBLIOGRAPHY 

1. Gol’denveizer. A. L. Some mathematical problems of the linear theory ot 
thin shells. Usp. Matem. Nauk Vol. 15. No. 5,196O. 

2. Gol’denveizer, A. L. Asymptotic integration of linear partial differential 

equations with a small principal part. PMM Vol. 23. No. 1, 1959. 
3. Gol’denveizer. A. L . Qualitative analysis of free vibrations of an elastic 

thin shell. PMM Vol. 30. No. 1, 1966. 
4. A 1 u m !!a, N . A. On the fundamental system of integrals of the equation for 

small axisymmetric steady-state vibrations of an elastic conical shell of revol- 
ution. Izv. Akad. Nauk EstSSR. Ser. Tekhn. i fiz. -matem. nauk. Vol. 9, 
No. 1. 1960. 



664 A. G. Aslanian and V. B. Lidskii 

5. Tovstik, P. E, Integrals of the system of equations for nonaxisymmetric vibra- 
tions of shells of revolution. In a Cdlectionr Investigations on Elasticity and 

Plasticity. (pp.45-55). Izd. LGU, (Leningrad State University)No. 5, 1966. 

6. Lidskii, V.B. and Khar’kova, N. V. Spectrum of a system of membrane 
equations in the case of axisymmetric vibrations of shells of revolution, Dokl. 

Akad. Nauk. SSSR Vol. 194. No.4, 1970. 
7. Dunford, N. and Schwartz, J. T, Linear Operators. Intersclence Publishers 

New York 1958. 
8. Vishik. M. I. and Liusternik, L. A. Regular degeneracy and boundary 

layer for linear differential equations with a small parameter. J. Usp. Matem. 

Nauk Vol. 12, No. 5(77), 1957. 
9. Khar’kova, N . V . On the lower portion of the spectrum of natural axisymme 

tric vibrations of a thin elastic shell of revolution. PMM Vol. 35, No. 3. 1971. 
lo. Gokhberg, I. Ts. and Krein, M. G. Fundamental statements on defec- 

tive numbers, radical numbers and indices of linear operators. J. Usp. Matem. 

Nauk Vol.12. No.2(74), 1957. 

11. Riesz, F. and Sz.-Nagy. 8. Functional Analysis, Frederick Ungar, 

New York, 1955. 

Translated by B.D. 
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Motion of a gyrostat is considered; The equations of motion are written in the 

Hamilton form and the change in the integrals of motion in the cases of Zhuko- 
vskii and Lagrange resulting from the Hamilton function undergoing small vari- 

ations is studied. 
Let the mechanical system under investigation depend on a set of parameters 

and let it be integrable for some definite values of these parameters. Study of 
the motion of this system in the case when the values of the parameters are cha- 
nged the system is no longer integrable, appears to be of interest. The solution 
of this problem involves overcoming certain fundamental difficulties connected 
with the problem of small denominators. In the case when the system is Hamil- 

tonian and the changes in the values of parameters are small, these difficulties 
have been overcome using the method proposed by Kolmogorov and Amoi’d in 

[l and 21. 
Amol’d’s solution [3] of the problem of a rapidly rotating, heavy, asymmetric 

rigid body with a fixed point, serves to illustrate the application of this method 
to the rigid body dynamics. 


